順番学研究所のご案内

無料ブログはココログ

カテゴリー「出版」の記事

2011年12月25日 (日)

書籍出版社の数理(16)――英語を日本語に翻訳すると分量はどのくらいになるか?

英語から日本語にすると分量が増えるって本当?

 たとえば、ですけれど、オバマ大統領に原稿を依頼するチャンスが回ってきたとしましょう。それを日本語に翻訳して雑誌や書籍に掲載してもよいというような話が急に来た、とします。
 でも、掲載できる紙幅は決まっているとしましょう。日本語にして4000字のスペースしかありません。その場合、オバマ大統領には、原稿を何ワードの分量で書いてもらえばいいでしょうか。
 あるいは、これから翻訳にかかってもらう英語の原稿があるとします。訳し上がりが何文字になるかは不明ですが、台割りや割り付けは先行して決めなければならないとします。大まかにでも翻訳原稿の分量に当たりをつけたいという場合、どうすればいいでしょうか。

 英語から日本語に翻訳した場合、分量がどのくらいになるのかというのは、さまざまな方面で問題になることが多いと思いますが、これについてネット上で検討した記事は見当たりません。たぶん、多くの方がこの問題で苦しんでおられるのではないでしょうか。そこで今回は、これについて考えてみます。問題をはっきりと定義すると、

「一般的に、英語の文章を日本語に訳した場合、英語の1ワードは日本語の何文字に相当するか」

ということになります。

自動翻訳の研究と、「1ワード何文字」問題の関係

 さて、ちょっと話が変わりますが、いまグーグルは、自動翻訳についての研究を進めています。自動翻訳というと、昔は、辞書や文法のルールをプログラムに打ち込む「ルールベース」のものが多かったようですが、グーグルなどの新興勢力がおこなっている自動翻訳へのアプローチはまったく異なったものです。その方法とは、とにかく原文と翻訳文を大量にコンピューターに読み込ませ、それらがどのように訳されているかを比較対照した結果を統計的に処理、その結果から、新たに与えられた文章をどのように訳すのが適切かを予測するというものです。人間が入れ込むルールは最小限にして、コンピュータに大量のデータを読み込ませることで統計上の相関を学ばせ、結果を出力させるというわけです。
 こんなことが可能になったのは、大量のデータを短時間で処理できるまでにコンピュータが進歩したからと、もうひとつは、正確に翻訳されている大量の文章が、ネット上に存在するからです。でも、その「正確に翻訳されている文章」とは、どこにあるのでしょうか?

 グーグルは自動翻訳開発のために、国連の文章を利用しています。国連の文書は、その性質上、数回のチェックを通されて、いくつかの言語に翻訳されます。必ず訳されるのは、英語、フランス語、ロシア語、中国語、スペイン語、アラビア語です。つまり、先の大戦の戦勝国と、言語使用者の人口が多くて無視できない勢力の言語に訳されるわけです。ですから、必然的に、自動翻訳もこれらの言語間ではかなりの進歩を見せていると思われます。しかし、日本語はこの業界ではマイナーな言語なのでしょう、あまり進歩していないのはグーグル先生の翻訳を見ると、よくわかります(それでも以前よりは良くなっているようにも思いますが)。

 それでも、国連では一部の文書は日本語に翻訳され、ウェブで公開されています。そして、この日本語の文章も、その性質上、幾度かのチェックを経て正確に訳されていると期待できます(しかし、日本語版には「暫定版」である旨の注記がなされてます。何か誤解が生じたときの責任は持たない、というエクスキューズでしょう)。
今回はその文章を使って、英語の1ワードが日本語の何文字にあたるのかを調べてみようと思います。

 国連の日本語広報サイトの中に、国連文書の邦訳が載っているページがあります。すべてが邦訳されているわけではありませんが、今回の調査には十分な量の文書があります。

国連文書邦訳(国連広報センター)

 ここから、いくつか文書を選択し、日本語の文字数をWord2010に数えさせました(全選択→コピー→Word2010にペースト→文字カウント。ノンブルやURLも一緒に貼り付けられてしまうが、全体の中の比率は小さいので、影響は無視できる)。同じ文書の英語版をネットから探し当て、そのワード数もおなじくWord2010に数えさせます(Word2010はスペースで分かち書きされている単位を1ワードと数える)。国連の文書には必ずコードナンバーが付いていて、対応する文書の各国語版を検索するのはそうむずかしくありません。そのようにして調べたのが、下記の表です。

                                                                                                                                                                                       
文書番号 英語ワード数 日本語文字数 文字数÷ワード数
安保理決議
PRST/2011/16 346 920 2.66
RES/1977 (2011) 2453 6213 2.53
RES/1980 (2011) 2024 5440 2.69
RES/1983 (2011) 1139 3090 2.71
RES/1990 (2011) 1255 3072 2.45
RES/1996 (2011) 3366 8180 2.43
RES/1998 (2011) 2726 6911 2.54
RES/2002 (2011) 2171 5899 2.72
RES/2003 (2011) 3244 8198 2.53
RES/2009 (2011) 2167 5346 2.47
事務総長報告書
A/63/677 17212 43242 2.51
A/55/305 45065 116213 2.58
A/59/565 46592 129201 2.77
A/59/2005 30517 72962 2.39
A/64/665 16207 41809 2.58
A/63/881 13521 37353 2.76
S/2010/498 21045 52604 2.50
A/65/354 9393 25801 2.75

合計(平均)

220443

572454

2.60

 というわけで、1ワードはだいたい2.6文字に換算できるということがわかりました。日本語総文字数が57万字ですが、だいたい、普通の新書1冊が10万字くらいですので、このくらいの分量があれば妥当な数値が導き出せると考えていいと思います。
 安保理決議とか、事務総長報告のような硬い文章での換算には問題があるのではないか、と思われる方もいらっしゃるかも知れません。でも、私自身のノンフィクション翻訳物書籍での経験からすると、この結果は妥当です。
 いかがでしょうかね。みなさまの、お役に立ちますでしょうか。

2011年11月28日 (月)

書籍出版社の数理(15)――本の価格の「最適化」は可能か? あるいは電子書籍の値段は下がるかの考察

「価格の最適化」って何のこと?

前回の続きです。前回は、一般に考えられいるのとは逆に、必ずしも定価販売が利益の最大化にとって良いことではないという話をしました。

しかし、本は法律と業界の習慣によって一物一価にすることが決定づけられており、後から値段を買えることも難しいので、最初にどのように価格を設定するのかは非常に大きな問題です。

一般に、本の値段はどのように決められているのでしょうか。出版社ごとにやり方は違うでしょうが、おおむね、コストに利益を積み上げる方式で設定されていると思われます。このときの「原価率」をどのように考えるのかには難しい問題があるのですが、まあそんなことをまじめに考えている出版社がたくさんあるようには思えません。結局のところ、「だいたい、こんなもんじゃないか?」というどんぶり勘定で決めていると思って、まあ大きく外れてはいないでしょう。経験則として、これまで何となくうまくいっているから、良いだろうというわけです。

しかし、価格を1つに決めるのであれば、最適な価格をつけるべきですよね。では、最適な価格とは何でしょう。それは、利益を最大化する価格です。これは原理的には、高校生でも解ける問題ですね。基本的な考え方は、利益を表す関数を導き、それを価格で微分して極値を求めればいいはずです。

p円の本を1冊作るのに、c円のコストがかかり、その本がd部、売れるとしましょう。
すると総利益Gは次のように表せます。

Photo_3

このとき、売れる数dは前回出てきた需要曲線に従います。ですから、価格pによって売れ数dは変化しますので、dはpの関数です。このGをpで微分し、その値がゼロになるp、すなわちGが極大となるpを求めれば、それが最適化された価格のはずです。

でも、本の需要曲線の形なんか、わかんないじゃないか!

しかし、問題は、本の需要曲線の形が不明だということです。他ジャンルの商品で需要曲線の形を求める際は、過去に値引き販売したときの販売数量データをもとに推定します。でも、本の場合、値引き販売の経験がないので、データがとれません。さまざまな本がさまざまな価格で売られていますが、そのことは需要曲線の推定には役に立たないんです。1000円で売られるAという本と1500円で売られるBという本の売れ数を比較しても、それは別の商品の需要曲線に乗ったものなので、手がかりになりません。

でも、何もわからないということもないのではないでしょうか。穏やかな仮定をおいて、妥当な推測をすることは可能かもしれません。いま知りたいのは、需要曲線の本当の姿ではありません。だいたい、本当の姿なんて、価格を変動させられる商品の場合でも、完全に把握なんかできないものです。大まかな形だけでもわかれば、大きな進歩です。

そこで、とりあえず、需要曲線が大まかに以下のような関数に従うと仮定してみます。

Photo_5

dは需要数(販売数)、pは価格、Aとαは正の定数(整数でなくて良い)です。

この式に従うとすると、価格がゼロ円の時に無限に売れ、価格が無限に高いときは売れ数はゼロになります。その間を単調減少な緩やかな曲線、べき乗の式に従うと考えるわけです。もし、αが1ならば、単純な反比例の式になり、価格が半分になれば、売れ数が倍、価格が3分の1なら売れ数は3倍という結果になるはずです。αが2ならば、価格を半分にすると売上数は4倍、3分の1なら売上数は9倍になります。 

つまり、αが大きければ、価格を下げたときに売れ数が上昇する効果が大きく、αが小さければ、値下げの効果はあまりないという関係になります。

どうでしょうか。まあまあ、無理のない仮定だと思います。

マーケティングがご専門の方から文句が出そうなので先に申しますと、私たちがいま知りたいのは、「ローカルな効果」ではありません。ローカルな効果とは、値付けを1000円から999円にしたときの効果のようなことです。きりの良い数字を割り込んだとき、需要が大きく変動するという効果が知られていますが、いま知りたいのはそういうことではありません。もっとグローバルな、全体として需要曲線がどんな形になっているか、ということです。

形を、このように仮定しても、それにどんな意味があるというのでしょうか。この「α」を求める方法がなければ、そんな仮定をしても前に進みません。それが、求める方法があるんです。

本の世界にも、一物一価でないものが、ないわけではありません。それは単行本と文庫です。刊行から十分に時間のたった同じタイトルの単行本と文庫本の売れ数を、POSデータで調べて上記の関数に入れ、方程式を解けば、αの値を求めることができるのです。

具体的に考えてみましょう。あるタイトルの単行本が1500円で7000部売れたとします。同じタイトルが700円の文庫になって1万5000部売れたとしましょう。1500円の時のdの値は、当然、7000ということになります。しかし、700円の時のdの値は、15000ではありません。もし、最初から700円で販売されていた場合には、単行本を買った7000人も、最初から文庫を買ったはずですから、dの値は15000+7000で22000ということになります。これを上記の関数に代入して、αを求めると、対数を使ってα=1.5であることがわかります。これとおなじことを自分が知りたいジャンルのタイトルについて、ある程度の数、調べれば、あるカテゴリの本が一般的にだいたいどんなαを持つのか、妥当な値を推定できるだろうということです。

文庫の場合、ほんとうは、値段による効果だけでなく、判型の違い、売り場の違い、販売タイミングの違いの効果が乗っかってしまいますが、他に手がかりがないので、これでガマンするしかありません。でも、いま知りたいのは詳細な需要曲線の形ではなく、ざっくりとした形状であり、そのざっくりとした形状を表すαの値なので、それほど大きな問題はないと考えられます。

でも、本当の目的は、αを求めることじゃありません。目的は、利益を最大化する、最適な値付けをおこなうことです。

需要曲線のαがわかると、利益を最大化する「原価率」を設定することができる!

いちばん最初に書いた、総利益の式を、こんどは上で仮定したべき乗の式を使って書き直してみましょう。

Photo_6

最適な価格を求めるためには、これをpで微分して0になるようなpを求めればいいことがわかります。

Photo_7

これをpについて解くと、以下のように利益を最大化する価格、pMAXが求められます。

Pmax

このとき、1冊あたりのコストcと、そのときの原価率rの関係は、以下のようになります。

R

ですから、これにpMAXの式を代入することで、利益を最大にする原価率、rMAXが以下のように求められます。

Rmax

なんか、えらく簡単な式になりましたね。

ちょっとこの原価率の式の性質について考えてみましょう。実際にαに数を代入して、考えてみます。もし、αが1.2なら、利益を最大化する最適な原価率rMAXは0.167となります。つまり、原価率16.7%で利益率は83.3%です。えらく利益率が高いですね。αが2なら、rMAXは0.5、つまり原価率50%で利益率も50%です。αが8だったら、rMAXは0.875、つまり原価率87.5%で粗利率は12.5%です。

前に整理したように、αの値が大きいほど、値下げにより売れ数の伸びが大きく、αが小さければ、値下げの効果はあまりありません。rMAXとαの関係を調べてみると、αが大きいとき、すなわち値下げによる効果が大きいときは、原価率を上げ利益率を減らしてでも価格を下げて、薄利多売によって利益を最大化するという戦術が効果的だということを示しています。逆に、αが小さく、値下げによる効果が大きくないときには、原価率を下げて利益率を大きく取り、一つ一つの販売から十分な利益を取るのが利益を最大化する戦術となるということです。まあ、当たり前のことではありますが、定量的にこのことが示されるのは決定的に重要です。

じっさいには、「原価率」の原価をどのように考えるのか(企画制作にかかるイニシャルコストを入れるかどうか、増し刷り以降の原価だけを考えるか)、売れあまりが生じた場合の損失をコストに考えるかどうか、などテクニカルな問題はたくさん考えられます。しかし、αが求められられれば、いままで非常にあやふやだった書籍の価格決定方法に、明確な指針が得られることになります。私はここまで計算したとき、ちょっと小躍りしました。

実際のαの値は、1より小さいらしいという、決定的な事実

つづいて私は、いくつかの方法で、ノンフィクションジャンルにおける、同一タイトルの単行本と文庫の価格、売れ行きを調査しました。そして多くのタイトルを調べれば調べるほど、残念な結論が導かれることになりました。

どうも、少なくともノンフィクション書籍においては、αの値は1以下であるようなのです。

rMAXの式を見ると、αが1より小さい場合、rMAXは負の値になってしまいます。つまり、原価率を負の値にしないと利益が最大化できません。αが1より小さいときは、利益を表す関数Gに極大値がないということです。ということは、ちょっとでも安くしたところで利益を大きくする効果はなく、とにかくできるだけ高い値段で売った方が得だという結論になります。

αが1より小さいときの需要曲線の形を考えてみれば、その理由がわかります。αが1ならば、価格を半分にすると販売数は2倍になり、トータルの売上は変化しません。もし、αが1より小さければ、価格を半分にしても販売数は2倍より小さくしか伸びず、総売上額は下がってしまいます。だったら、高い値段で売った方が得に決まってます。もちろん、実際の需要曲線は、これほど単純なわけではなく、こういう関係性が非常に高い価格域まで持続することは考えにくいとは思います。でも、書籍はマーケティングでいうところの、いわゆる「価格弾力性」が小さく、値下げの効果があまりないと言うことは、事実のようです。これにより、価格の最適化はできません。上に書いた数式をじっくり追った方には大変申し訳ございません。私のガッカリを追体験していただきたかったものですから。

だったら、なぜ本の価格はこんなに「安い」のか?

以前、書いたように出版社が出す多くの本はとことん売れないので、単体では赤字になります。でも、上に書いたように値段を下げることでの売上額増の効果がなく、かえって売上が減少するのであれば、逆に値段を上げても売上額は上昇することになりますから、個々の本が赤字にならないよう本の値段を上げて、経営を改善すればいいのではないでしょうか。しかし、多くの出版社がそれをせず、多くの本で赤字が出るような価格設定にしています。つまり、単純に、需要曲線の形を考えた場合に予測されるより、本の値段は安く設定されていると考えられるのです。これは謎と言えるでしょう。どうしてこんなことが起こるのでしょうか。

一つには、出版社としての「使命」があると思います。きれい事みたいですが、一応いっておきます。本には「ある考えをなるべくたくさんの人に効率的に伝える」という使命があります。もちろん、売上額は大事ですが、たった1人の人が1冊を5000万円で買ってくれてそれ以外に1冊も売れなかった場合、それは本来の意味での出版ではありません。パブリックなものにするというのがバブリッシュですから、ただ本を作って売上金を得ればいいというものではないのです。もし、値段を上げた方が売上金額や利益が多くなるとしても、売れ数も伸ばしたいので(価格を下げても極端に売れ数が伸びるわけではないが、上げれば少しずつ売れ数は下がるのは事実なので)、両方を満たすある程度の折衷的な価格に落ち着き、そのために必ずしも利益が採れない事態に陥るということです。

もうひとつには、αが1以下というのは確かに多くの本に当てはまる事実かも知れませんが、ベストセラーにおいてはそうとは限らないということがあるのかもしれません。いくつかの単行本と文庫を見たかぎり、確かに平均的にはαが1未満ですが、1以上の高い値となる本が少数存在し、その売れ数が他の本の売れ数など問題にならなくなるほど多ければ、全体的に価格を低くつける十分な理由になります。ベストセラーではαの値が十分高く、しかも、値付けをするときにはその本がベストセラーになるかはわからず、そのうえベストセラーの売上げが全体のほとんどを占めるほど重要であれば、どの本も安めに価格をつけようというインセンティブが働きます。その結果、タイトル別に見ればほとんどの本が赤字になっても、出版社全体としては、一部の本が売れることによって十分な黒字が出せる可能性があります。しかも、本の値付けのチャンスは発行したときの1度きりですから、売上が伸びないことが判明したとしても後から値上げをすることはできず、赤字を甘んじて受け入れるしかありません。

ベストセラーになるには、その本が売れる必要があります。トートロジーのようですが、大ベストセラーは小ベストセラーが成長することによって生まれるという意味です。本がある程度売れると、その本に関する口コミが広がり、そして売れていること自体がニュースになって報じられ、より買われやすくなるのです。この、いわゆる「バンドワゴン効果」によって売上は伸びていきます。その過程で、αは最初は1以下だったとしても、ある時期に1を十分に超えることがあると考えられます。ベストセラーになるには、付和雷同的な読者がたくさん生まれることが必要ですが、その過程では価格が安いことが重要になると考えられるのです。

ベストセラーがいちばん売れているときには、αの値が十分に1よりも大きくなっているはずだという仮説は、もっともらしいのですが、証明は困難です。かつてベストセラーだった本の、単行本と文庫の売れ数を比較しても、文庫が出るのは単行本発行のかなり後のことで、文庫刊行時には売れ行きのピークを過ぎており、従ってαは1以下に下がっている可能性が高いく、参考になりません。ベストセラーのピーク付近で、値下げをおこなって売れ行きの変化を見れば、この効果の存在を証明できるかもしれませんが、そのようなデータはないでしょう。

日本で売られている本は多くのものが(専門書ではない一般的な本)、増刷時の原価率(紙代・印刷代・印税などを原価と考え、制作のイニシャルコストは原価に含めないで計算したもの)でおそらく30~50%、すなわち利益率で70~50%になるような価格に設定されていると思われます。これは、先の最適化で考えると、αの値がだいたい、1.5~2の場合に相当します。もしかしたら、ベストセラーのもっとも売れているときのαは、この程度になっているのかもしれません。あるいは、出版社の中の人が、ベストセラーになる場合にはαの値がこのくらいになると信じている、ということなのかもしれませんね。

一般的にαが1未満であるとすれば、電子書籍の価格は今後どうなっていくのか?

一般的に書籍の需要曲線を考えるとき、べき乗の式を仮定するとαの値が1以下になるという性質は、おそらく電子書籍においても同じでしょう。そう考えると、電子書籍の価格というのは今後どのようになっていくのでしょうか。未来予測はつねに困難で、外れると恥ずかしいだけですけれど、あえてしてみましょう。

電子書籍が普及すると、電子書籍の値段は極端に下がるのではないかと期待している人が多いようですが、電子書籍も本と同様に値下げしても売れるようにならない、すなわち電子書籍にも価格弾力性がないであろうことから、値下がりはそれほど期待はできないと思われます。まあ、それが需要と供給のバランスというものです。

しかし、電子書籍の場合、価格が定価によって拘束されず、もっと自由に値段を決められます(独占禁止法を厳密に解釈し、電子書籍は書籍ではないと考えれば、あくまで小売価格を決定する権利を持っているのは小売店ということになりますが)。価格改定による混乱も、紙の本と比べれは非常に少ないと思われます。先ほど考察したように、ベストセラーになって売れ行きがピークを迎えているときに、αが本当に1より十分に大きくなるというのであれば、そのときには値下げされて、より多くの利益を得ようとするようになるかもしれません。

その一方で、ほとんどの本と電子書籍は、αが1を超えることはないまま一生を終え、収支としても赤字となるという事実は変わらないでしょう。紙の本の場合は値付けの変更が困難なので、上に述べた「安すぎる価格」は放置されるのが常ですが、電子書籍では価格の変更がもっと柔軟にできるので、ある本がベストセラーにならないことが明らかになった場合は、合理的に考えると出版社は本の価格を値上げする可能性があります。そんなことをして本当に、売り上げ額が伸びるのかどうかは分かりませんが、何回かの試行の後、本当に売り上げ額が上昇することがわかれば、どの社もそうするようになるでしょう。それが定着すると、紙の本の在庫がなくなっても増刷ができないような売れ行きの悪い本なら、電子書籍の価格は紙の本より高く設定されるようになるかもしれません。

それでも、電子書籍は、おそらく最初から紙の本よりは少し安めに設定されるのが定着するでしょう。これは一物二価のほうが一物一価よりも売上が伸びるという、前回の理屈の応用です。通常価格を払って昼間映画を見に来る人と、安い値段でレイトショーを見る人をふるい分けることで全体的な売上を伸ばすというのと、同じですね。少しでも安く買いたい人は電子書籍で買うように仕向けて、一方で紙の本を買った人もそのことに不公平感を抱きません。電子書籍が定着すると、紙の本の売れ数は減ると考えられますが、その分を補うために、紙の本をかつてより高く設定し、電子書籍との差をつけるようになるのではないでしょうか。

一方で、図書館や中古本市場と、出版社の戦いは緩和されるでしょう。法律がどうなるかによりますが。図書館の本が無料で読めるということ、新古本市場で本が半額以下で買えるという事情と、出版社とのせめぎ合いは、電子書籍が主流になると緩和されると思われます。これまた、出版社に強気の値付けを決断させやすくなる原因となるかもしれません。

というようなことをつらつら考えると、電子書籍になっても、少なくとも当面は、劇的に価格が下がるということはないのではないかと考えられます。この予測を、楽観的というか悲観的というか、どちらから見るかによって異なりますが、いずれにせよ、本には一般的に、それほど価格弾力性がないということを認識すれば、自ずとこんなような結論になります。

さて、今回はあまりにお商売っぽい話に終始しすぎたので、次回はお金の話からは離れたことを書きます。

2011年9月23日 (金)

書籍出版社の数理 番外編――ワークショップで発表します

 2011年10月27日と28日に、明治大学先端数理科学研究科の主催によるワークショップ、「複雑系ゆらぎデータの分析と制御:脳から社会まで」が開催されます。
 そのワークショップで、これまで研究してきた書籍出版社の脆弱性と書籍販売数の分布の関係について、発表の機会をいただきましたので、お知らせします。
 詳しくは、オーガナイザーの高安秀樹先生のブログをご覧ください。私は、2日目の午前中に発表する予定で、内容は本ブログに即したものにするつもりです。

2011年7月12日 (火)

書籍出版社の数理(14)――何を目的として、値段をつけるべきか?

価格決定の目的は何か?

 今回は、本の値段の付け方について書きます。

 本に限らず、一般に、商品の値段をメーカーや小売業者などが決めるとき、何を目的にして決めるのでしょうか。たくさん売るため、でしょうか。それとも、なるべく高く売るためでしょうか。あるいは、お客様に奉仕するためでしょうか。

 値段を決める第一の目的は、利益を最大化するためであるべきでしょう。読者だって、いい本を出す出版社がつぶれてしまうのを喜ぶはずはありません。単に高く売って、そのうえ利益が少ししか出せない出版社がつぶれたり、あんまりにも安売りする出版社がやっぱり利益を出せなくてつぶれたりするのは、好ましくないでしょう。あたりまえですけれど、利益は大事です。しかし、このアタリマエのことが、やや忘れ去られているように思えるのは私だけでしょうか。

 さまざまな分野で、需要不足と供給過多が問題になっている昨今では、ライバルを価格競争に引きずり込んで疲弊させるために低価格をつけたり、新商品の口コミ効果を期待して初期に購入してくれる冒険的な消費者に非常に安い価格で提供したり、ということばかりが注目を集めているように思えます。

 しかし、本の場合、安直な二番煎じ本か、マニュアル本や学習本を出すのでない限り、その特定の本でなければ目的を達成することができず、代えが効かないので、多くの場合、ライバルの存在は他の商品ほど問題になりません。さらに、本は、読者に1回だけしか購入されず、リピート購入はありませんから、一度だけ廉価に試供品を提供するというような戦略には意味がありません。また、最初は安くして初期の冒険的な消費者に買ってもらい、後に口コミ効果が出始めてからフォロワー的な消費者に高い値段で売る、といった価格戦略も採れません。本は多くの場合、値付けの機会が1度だけの定価販売商品だからです。

 書籍には、このような特殊な条件があり、ライバル商品を意識した小細工ができないし、あまり必要ないので、価格を決める本来の目的である「利益の最大化」をもっとも意識した戦略が重要なのではないかと考えられます。この観点から、本の値段の付け方を考えてみたいと思います。

定価販売はよいことか?

 さて、書籍は日本では数少ない、定価の設定が認められた商品で、つまり、メーカー側が小売価格を指定できます。多くの商品ではそのような「小売価格の拘束」は禁止されていますが、書籍や雑誌は、文化を守るという目的のために、例外的な措置が為されているのです。

 定価販売というのは、一つの商品に一つの定価がついていて、全国どこでもその同じ価格で買える(それ以外の値段では買えない)ということです。つまり、法律で「一物一価」が守られているということになります。

 この定価販売を維持するために、書籍業界は様々な努力を払っています。しかし、それは「いいこと」なのでしょうか。これにはさまざまな議論がありますが、もし、出版社や書店が多くの利益をとることが目的であれば、画一的な定価販売しかとれない現在の制度よりも、もっと「いい方法」はあります。

 それを考えるために、商品の価格と売れる数の関係を示す「需要曲線」について考えてみましょう。

Photo

 需要曲線は上の図ように、価格が増加するにしたがって単調減少していきます。ですから、たとえば「価格が1000円のときにもっともたくさん売れて、900円にしても1100円にしても、販売個数は減る」というような商品はないと考えられています。

 じつは、この需要曲線が必ず単調減少であるということに、画一的定価販売よりももっと大きな利益を生み出す「方法」のヒントがあります。

 需要曲線が単調減少だということは、「900円で売った時の売れ数の方が、1000円で売ったときの売れ数より必ず多い」ということを意味しています。ということは、見方を変えると、「1000円だと買わなかったけど、900円なら買うという人が必ずいる」ということになります。

 同じように、「1100円なら買わないけど1000円なら買う人」や「900円なら買わないけど800円なら買う」という人もいるはずです。そして、これら「1000円なら買う」「900円なら買う」「800円なら買う」という人々は、商品が700円で売られた場合には、全員買うはずです。

 このようにそれぞれの人は、ある価格以下になったら購買行動をとるというしきい値があり、そのしきい値以下の価格では必ず購入すると考えられます。

 このような、価格による購買行動の違いを「価格感受性」の違いといいます。 価格感受性は、非常に変動しやすく、お店の雰囲気やお財布にいくら入っているか、などによって変わってしまうそうですが、まあここでは簡単のために、それぞれの人がずっと同じ価格感受性を持っていると考えましょう。

 

「安くないとイヤな人」と「高くても平気な人」がいると言うことと、価格戦略

 さて、このように人にはそれぞれ価格感受性があると考えると、定価を設定するということの意味も違って見えてきます。

 たとえば、定価を1000円に設定すると、「1500円でも買う」と思っていた人も、1000円で購入することになります。この「1500円でも買う」と思っていた人に、もし1500円の値段を提示できれば、その人からは当然1500円を得られたはずです。

 逆に、1000円の値段をつけると、「900円なら買う」と思っていた人は買いませんから、販売の機会を逸してしまいます。商品の原価が900円よりずっと低いなら、この「900円なら買う」人にも900円の値段を提示して買ってもらう方が、儲けが増えます。

 このように、顧客の価格感受性にしたがって値段を提示し、時には安く、時には高く売ることができれば、全体の利益はずっと増えるはずです。顧客の価格感受性をうまく探り当て、きめ細かく値付けができれば(それぞれの顧客が買うと決断するギリギリの価格を提示できれば)利益は最大になります。理論上は、この価格が多段に設定できるほど、利益は増えることになりますね。

 例題を考えてみましょう。原価が1000円未満の商品を考えます。その値段が1500円なら買う人が20人いるとします。1400円なら買う人はさらに20人増えて40人、以下同様に100円下げるごとに20人ずつ増えて、1300円で60人、1200円で80人、1100円で100人、1000円で120人だとしましょう。

 この商品に1300円の定価をつけると、売上はいくらでしょうか。答えは、1300×60=7万8000円ですね。同じように1000円の定価をつけたとした場合は、1000×120=12万円です。

 では、同じ商品を、顧客の価格感受性に合わせてそれぞれ、1300円と1000円の2段階に値付けしたら、売上はいくらでしょう。答えは、1300×60+1000×60=13万8000円です。

 さらに、細かく顧客の価格感受性を調査し、1500円から1000円まで100円刻みに価格設定できた場合の売上はどうなるでしょうか。答えは、1500×20+1400×20+1300×20+1200×20+1100×20+1000×20=15万円となります。このように、理論上は、細かく値付けができるほど(もちろん原価よりは高い値付けでなければいけませんが)、利益は増えるんです。これは、需要曲線がどんな形をしていようとも、価格に対して単調減少であれば必ず成り立ちます。

でも、そんなにうまく個人ごとに価格提示できるわけないだろ!?

 しかし、この戦略を実現するには問題がいろいろあります。まず、それぞれの 人の価格感受性を探ることがそう簡単ではありません。

 たしかに、つい最近まではそうでした。しかし、いまや個人の商品購入履歴は、CRM(カスタマー・リレーションシップ・マネジメント)によってかなり詳細に分析できるようになっています。平たく言えば、ネット通販での購入履歴の収集、ポイントカードなどによる顧客情報と購入履歴のひも付けなどか ら、個人の価格感受性を推定できると考えられるのです。たとえば、あの人が服はバーゲンでしか買わないくせに鉄道模型を買うときは金に糸目をつけないというようなことを、かなり定量的に分析できるようになってきているということです。でも、これを過剰に行うと、個人情報の収集がいきすぎているとして、各方面から非難される可能性があります。それに、収集した情報が流出した場合には、収集していた企業も顧客も、たがいに相当の痛手を被ることになるでしょう。 賠償問題にも発展しかねませんし、企業イメージを著しく下げることになります。

 価格感受性の推定が簡単になったとしても、他にも問題があります。相手によって価格を変える戦略は、はっきり言えば、相手の足元を見て価格を決め る行為です。いちばん必要としている人に高く売り、大して必要でない人には安く売ることになりますから、売り手がこのような戦略をとっていることが消費者にわかると、不公平感からかなりの反感を買う恐れがあります。

 実際にこれをやってしまったのが、初期のアマゾンでした。アマゾンでは顧客にID登録させて購入履歴をとり、それによってレコメンデーションなど を行っています。初期のころはそれだけでなく、購入履歴から客の価格感受性を推定し、個人ごとに違う価格を提示していました。つまり、金に糸目をつけす フィギュアを購入している客には、フィギュアの値段を高く提示するというようなことが行われていたのです。そういう顧客たちは、自分のIDでログインした 後に提示された価格が、ログイン前に見た価格より高いことに気づき、激怒しました。さらには消費者団体などからも敵視されることになってしまったのです (今はそういうことはしてないそうですから、安心してください)。

相手を怒らせずに、「足下を見て売る」を実行している人たちがいる!

 しかし、価格感受性に合わせてそれぞれ別の価格を提示することは、個人情報を入手せず、顧客から反感も受けずに、そう難しくなくできる場合があるんです。

 多くの場合、価格感受性の強い(「安い」のが好き)な客は、安さのためには努力や苦労を厭わない傾向があります。また、安さのためにはある程度の悪条件も受け入れます。この傾向を利用して客をフィルタリングし、価格提示を行うのです。

 例えば、映画は、レイトショーでは価格が安く設定されています。これは、「深夜に映画館にくる」という苦労をフィルタリングに使って、価格感受性 の強い消費者を選り分け、安い値段を提示しているのです。1700円でも観るという人は、わざわざ深夜にはきませんから、彼らからは1700円を得ること ができます。一方、1200円しか払いたくない人は、わざわざ深夜にきますので、彼らから1200円を得ることができます。もし、1700円の画一的な価格だったら、彼らは映画を観にこない可能性が高いですから、まったくお金を得ることができなかったかもしれません。つまり、レイトショー割引のために、そのぶん、売上は増えたことになります。その上、1700円を払って観た客も、不公平だと怒ることはありません。

 同じようなことは、キャッシュバッククーポンを使っても行われています。商品の箱にクーポン券がついていて、これを郵便でメーカーに送り返すと、 いくらか現金や商品券がもらえるというものです。高い値段で買っても構わないと考えていた人は、わざわざクーポンを切り取ってハガキに貼り付け、投函するなどという面倒なことはしませんが、価格感受性が強い人は、これをやります。ここでも、価格感受性の低い人には高く売り、感受性の高い人には安く売るということが実現され、さらに消費者はそのことに文句を言いません。まあ、世の中にはうまいことを考える人もいるものですね。

 さて、このように必ずしも一物一価の定価販売が、利益の最大化のためにいいとは限らないのです。では、一物一価であるの本の値付けは、どうあるべきなのでしょうか。そして、本の値付けはどうしてこんなに難しいのでしょう。次回に続きます。

2011年6月21日 (火)

書籍出版社の数理(13)――中小出版社の成長戦略はどうあるべきか

発行点数が増えるほど、経営の安定性は増していく

 今回は零細出版社(年刊出版点数15 点未満)を卒業して、中小出版社となった書籍出版社が、「確実タイトル」を使ってより安定した経営や、さらなる成長をめざす場合にどうしたらよいのかを考えます。具体的には、タイトル数を増やしていった場合に90%水準がどう変動するかを詳しく見たいのです。

 今回もいつもと同じように本の売り上げ分布はべき分布に従うとし、いつもと同じ条件でシミュレーションします。本の価格もすべて1000円だとします。

毎回言ってますが、90%水準とは、シミュレーションの結果、90%の確率でそれ以上の年間売り上げが得られると予測される金額のことです。90%水準/nとは、年間売り上げの90%水準をそのときの発行タイトル数で割ったものです。理論上、1タイトルあたりのコストがこの値を上回ると、10%の確率で赤字になることになります。

 まず、出版点数を増やしていったときの90%水準/nの値を考えてみましょう。これは以前、「書籍出版社の数理(10)――じゃあ小規模書籍出版社はどうすればいいの?」で表示したのと同じデータです。下のグラフをご覧ください。

90

90%水準/nは、発行点数50点で570万円程度、100点で620万円程度です。

中小出版社(発行タイトル15点以上)にとって、5000部確実タイトルは意味を持たない

 前回の議論で、発行タイトル数が15点程度になってくると、5000部確実タイトルがいくつかあったとしても、90%水準/nの値にはほとんど影響がなくなると指摘しました。年間15点くらいの規模になると、5000部規模の確実タイトルを作るよりも、「水ものタイトル」を1点多く出した方が経営の安定に資するということです。今回の議論でも明らかなように、この傾向は、nの値が増加するにしたがってより顕著になってくるので、規模の小さい確実タイトルの魅力は急激に低下し、1点でも多くの水ものタイトルを出そうというインセンティブがどんどん高まることになります。

 では、確実タイトルの開発には意味がないのでしょうか。まあ、確実タイトルとして、そのときの90%水準/nと同程度の規模のものを作っても、意味がないとはいえるでしょう。それくらいなら、1点でも多くの水ものタイトルを出す方がいいのです。

 でも、1点増のときの90%水準改善は漸近的に売り上げ分布の平均値、本シミュレーションの場合は約763万円(約7630冊の売り上げに相当)に近づいていき、これを超えることはありません。ということは、この平均値を十分上回るような規模の確実タイトルなら、意味があるということです。

 中小規模の出版社の場合、だいたい1万部規模の確実タイトルであれば、意味がありそうなことは、「書籍出版社の数理(10)――じゃあ小規模書籍出版社はどうすればいいの?」で述べたとおりです。できれば、もっと大きく5万部程度の規模があればいうことがありません。年間50点発行の小規模出版社に、毎年、5万部売り上げ確実タイトルが存在すれば、規模が4倍以上になったのに匹敵するほどの90%水準/nとすることが出来るからです。

 しかし、ここである疑問が浮かびます。

大規模な確実タイトルもっている中小出版社がタイトル数を増大させると、安定性は低下するか?――答えはNO

 思い出してほしいのですが、前回見たように、零細出版社が5000部確実タイトルからスタートして、タイトル数を増加していったとき、一時的に90%水準/nの値がかなり落ち込みました。中規模出版社でも同じようなことは起こるのでしょうか。

 たとえば、年間50点発行の中規模出版社が、毎年発行できる5万部確実タイトルを開発したとします。その会社は翌年もその5万部確実タイトルを出しつつ、調子に乗って一方で水ものタイトルの発行点数を増加させ、規模拡大を試みたとしましょう。この場合、この出版社は90%水準/nの落ち込みを経験するでしょうか。急激に落ち込むのだとすれば、規模拡大なんかしないで、5万部確実タイトルの恩恵を受けていた方がいいことになります。

 これを検証するためのシミュレーションも行いました。結果が以下のグラフです。

590n

 縦軸が90%水準/n、横軸は発行タイトル数。上の青い線が5万部確実タイトルがある場合の90%水準/nのタイトル数増にともなう変化、下の茶色い線は、確実タイトルがない場合です。

 確実タイトルのない50タイトル発行の中規模出版社が、あるとき毎年発行できる5万部確実タイトルを開発できたとします。この状況は、下の茶色い線から、上の青い線への「遷移」と考えられます。グラフの「50タイトル発行」の位置を読み取ると、90%水準/nは約570万円から約660万円へと大幅に改善することがわかります。

 そしてその状態からタイトル数を増やすことは、青い線を右側にたどっていくことに相当しますが、ご覧の通り、90%水準/nはほとんど減らないのです。さらに、5万部確実タイトルをもっていることの優位性は、発行タイトル数が150を超えても、まだ明確に存在し続けることがわかります。

 よって、50タイトル発行の中規模出版社の場合、5万部確実タイトルの開発が、規模拡大のインセンティブを弱めることにはならないのです!

でも、規模縮小=「選択と集中」というインセンティブは生じる…

 でも、もう一方で、「悪魔のささやき」のような負のインセンティブが発生する可能性があります。5万部確実タイトルがある場合、タイトル数を増やしたところで90%水準/nは増加するというわけでもなく、ほぼ横ばいです。もっとよく見ると、青いグラフの左側で、90%水準/nは発行点数が少ない方が大きくなっています。

 こうなると、経営陣は利益追求のためにタイトル数を減らしたくなるかもしれません。経営的な言葉を使えば、「選択と集中」を行って、確実タイトルに特化し、それ以外の「水ものタイトル」をリストラするということです。実際に、発行点数を減らしていったらどうなるか、タイトル数が少ない方のプロットを見てみましょう。

590n10

このグラフを見ればわかるように、もし5万部確実タイトルを維持したまま発行点数を10タイトルまで減らせば、90%水準/nは900万円超まで増加するのです。儲かるタイトルが出来たら、社員をリストラして、少ない人数で分かち合った方がいい、ということかもしれません。

 しかし、これは経営の安定につながる行為でしょうか。

 もし、この5万部確実タイトルが永遠に発行可能で、どんな状況の下でも本当に確実に5万部売れるのであれば、ほかのタイトルなんかやめてしまってもかまわないかもしれません。でも、そんなことはあり得ません。あるとき売れていたものでも、何らかの理由で出せなくなったり、売れなくなってしまうことはよくあります。そうなって、5万部確実タイトルが出せなくなったら、売り上げの低下は非常に大きく、発行タイトル数が10点程度なら、このショックにはとうてい耐えられないでしょう。

 そうではなくて、5万部確実タイトルで得た経営の安定性を利用し、ある程度人員などを補充、発行点数を増やしていければ、将来、この5万部確実タイトルが何らかの理由でなくなってしまっても、90%水準/nをある程度の大きさに保つことができ、ショックに耐えることが出来るでしょう。このように、タイトル数をある程度まで増やしておくことで、安定性を確保することは、やはり意味のあることだと思われます。

タイトル数を増やすことの意味をもう少し考える

 ここまでで、もう、だいたい、いいたいことは終わっているのですけれど、せっかくなので、タイトル数を増やすことにどういう意味があるかを、もう少し考えてみましょう。

 上の方のグラフで見たように、90%水準/nは、発行点数50点で570万円程度になります。しかし、このことから、50タイトル刊行の出版社が51タイトル出したら、90%水準が570万円増える、と結論することは出来ないんです。よく考えるとわかりますけど、ここがややこしいところです。1タイトル余分に出すことの効果は、90%水準/nよりも結構大きいんです。

 中小出版社があるとして、その出版社が規模拡大を狙って1タイトル、普段の年より多く刊行した場合、90%水準はどのくらい増えるか。すなわち、nタイトル発行の出版社がn+1タイトル発行した場合、90%水準はどのくらい上がるか、ということです。それを調べたのが、下のグラフです。

190

このグラフが何を意味しているかというと、たとえば、横軸10のところの値は、

[11タイトル発行の場合の90%水準]-[10タイトル発行の場合の90%水準]

を示しています※。ちょっとでこぼこしていますけど、あまり気にしないでください。

 このグラフを見るとわかるように、50タイトルの場合のタイトル1点増の効果は、620万円超となり、50タイトルの90%水準/n(=570万円程度)よりもずっと大きな値になります。「90%水準/nの増加」よりも、「90%水準の増加」はずっと大きいんです。これは、nが小さいときは90% 水準の値が小さく、nが大きくなるにつれ、中心極限定理の効果により急速に90%水準が増大していくからです。nで割って平均化することで、中心極限定理 の効果が薄まってしまうんです。

 つまり、nが大きくなればなるほど、n+1の場合の90%水準の改善幅は大きくなります。この改善幅は理論的には、中心極限定理により、本の売り上げ分布の平均値である約763万円(「書籍出版社の数理(11)――堅実な出版社が毎年1点だけ冒険的タイトルを刊行した場合」を参照のこと)に漸近的に近づいていくと考えられます。

 5万部確実タイトルをもった出版社がタイトル数を増加させても、90%水準/nは低下しない理由も、ここにあります。nがある程度大きければ、1タイトル増による90%水準の改善効果はそのときの90%水準/nを大きく上回る。だから、5万部確実タイトルをもった出版社がタイトル数を増加させても、90%水準/nは低下しないんです。

 もうひとつ検討したいのは、「じゃあ、何でもかんでも、たくさんタイトルを出せばいいのか」ということです。まあ、当然、そんなことはないと思います。粗製濫造がひどくなれば、「売り上げ分布」も仮定していたものより悪化してしまうでしょう。それぞれの出版社が工夫を凝らし、適正な範囲でちゃんとした本を作って、その中で売れる本があったり売れない本があったりする。その分布が市場で観測される「売り上げ分布」で、本ブログではそれを再現するような関数を使ってシミュレーションを行ってきました。売れるように本を作るのは、難しいですし、運が必要ですが、売れないように本を作るのは簡単ですし、確実に出来ます。とうぜん、両者の間には、明確に違う売り上げ分布が観測されるはずです。発行点数増を強く意識過ぎて、あまり無理をすると、かえって痛い目を見ることになるでしょう。まあ、これは数理ではなくて、あくまで業界人の勘ですけれど。

次回は本の定価の決定の仕方について考えます。

 さて、今回までで、べき分布の市場と経営の安定性という視点からは、言いたいことは言い尽くしたように思います。次回は、本の「定価」について考えます。

 本の価格は、日本では「定価」として出版社が決めていいことになっています(独占禁止法の例外として認められています)。しかし、出版社がこの定価を決める際のやり方は、多くの場合、勘に頼ったり、もしくは恣意的に決めたルールにしたがっています。非常に、非合理的なんです。これを合理的に行い、最適な定価をつける方法はないでしょうか?

 次回は、そもそも、「定価」で販売することのメリットとデメリットから解説し、最適な「定価」とは何か、それを決定する方法はあるのかを考え、私の試みとその失敗について、お話ししたいと思います。

 

※少しテクニカルな話になりますが、シミュレーションは乱数を使って行うため、90%水準は数値計算を実行するたびに値にばらつきが出ます。経験的には、1万回試行で90%水準を求めると、だいたいプラスマイナス3%程度揺らぐようです。上の「1タイトル増による90%水準の増加」を求める際には、2つの90%水準の計算結果の差を取るので、最大でこの揺らぎが2倍に増幅される可能性があります。この増幅を考えに入れると、それぞれの90%水準を揺らぎが半分程度になるように、正確に求める必要があります。
そのため、いつもならそれぞれ1万回の試行で値を求めるところ、このグラフ作成に当たっては100万回の試行を行い、90%水準をより正確に求めました(計算にはすごく時間がかかりました)。しかしそれでも、60タイトルや70タイトルの場合の「90%水準の増分」には揺らぎが見られますね。

2011年6月11日 (土)

書籍出版社の数理(12)――零細書籍出版社が規模拡大する、たった一つの確実な方法

●確実タイトルがなかったら、出版社としてスタートできない

 前回、5000部確実タイトルが5本ある零細出版社が確実性のない「水ものタイトル」を出すと、経営が悪化する簡単な数理を、示しました。これをヒントに、零細出版社の成長戦略を考えてみます。

 零細出版社の場合、確実タイトルがまったくなければ、まずもって出版社として長期的に存在することが出来ません。下のグラフは、確実タイトルがない出版社が、タイトル数を増やすに従って「90%水準/n」の値がどう変わるかを示したモノです(今回も、これまでと同じ条件でシミュレーションを行っています。本の価格もいつもと同様、1冊1000円と考えます)。縦軸が90%水準/nの金額、横軸は年間発行タイトル数です。

 基本的に書籍出版社のコストは発行タイトル数に比例すると考えられるので、90%水準(90%の確率でこの値よりも売り上げが多くなるとモンテカルロシミュレーションから予測される水準)を発行点数nで割った数値が経営の指標となります。

90n

 ごらんのように、確実タイトルがまったくないと、90%水準/nはわずか320万円から出発しなければならず、かなり苦しい状況です。第9回で示したように、年間50タイトル発行ならば90%水準/nは570万円を超えますから、その場合と同じようなコスト体質でやると、まったく成立しません。もし、確実タイトルがなくて、年間1タイトル発行の出版社としてスタートすると、ほぼ確実に会社はうまくいきません。呼吸せずに生きるようなモノです。確実タイトルがないならば、最初の段階で資金と企画をたくさん用意し、初年にせめて15点くらいは出さないとスタートを切ることさえ厳しいでしょう。数理的にはその方が、「安全策」のつもりで年間2~3点からスタートするより安全です。点数が増えていけば、90%水準/nは最初のうちかなり急激に上昇するからです。

 しかし、用意すべき資金量や人材の観点から、いきなりある程度の規模でスタートするのは相当に難しいはずで、それだけ資金的にも人材的にも恵まれた形で事業をスタートできる人はほとんどいないでしょう。

●確実タイトルがあれば、安心して事業を拡大できるか?

 では次に、5000部確実タイトルが1点ある状態から、事業拡大を目指す例を考えてみましょう。出版社として事業を開始する際、とにかく確実に5000部売れて毎年作れるタイトルを1本用意して、ミニマルなところから事業をスタート、徐々に出版点数を増やしていくというモデルです。その場合の90%水準/nの推移を示したのが以下のグラフです。

50001

 5000部確実タイトルだけを出していれば、売り上げは、平均値も中央値も90%水準/nもすべてが500万円です。そこに確実性のない「水ものタイトル」を加えて発行していくと、急激に90%水準/nは悪化し、さらに発行点数が増えるにつれて徐々に回復していきます。この「谷」の深さはかなり強烈ですが、出版点数が2~3点の場合に見られる最低値でも、400万円程度ですから、確実タイトルがない場合に320万円からスタートしなければならなかったことを考えると、かなりの改善といえます。

 では、もう少し安全策をとって、5000部確実タイトルが2つある状態から事業拡大を目指す零細出版社はどうでしょう。その場合の90%水準/nの変動を示したのが以下のグラフです。

 50002

 見た目にも「谷」は浅くなり、発行点数が合計4点の時に見られる最低点でも430万円弱ですから、改善されています。

 では、もっとたくさん、5000部確実タイトルがあったらどうでしょうか。それを示しているのが下のグラフです。このグラフの横軸の数値は年間発行タイトルの合計ではなく、「水ものタイトル」の数です。このほかに、確実タイトルを出しています(確実タイトル3点のグラフの横軸が3の位置では、合計6点出している)。縦軸はこれまで同様、90%水準/n、つまり年間発行タイトル数n(確実タイトルと水ものタイトルを合わせた数)で90%水準を割った値です。

 5000

このように、最初にもっている確実タイトルの数が多いほど、「谷」は浅くなり、より安全に規模拡大が出来ることがわかります。

●大事なのは「コストのコントロール」と「素早い事業拡大」

 以上のことから、零細出版社が安全に規模拡大を行おうとするならば、ごく初期の段階で「確実タイトル」が必要であることがわかります。それをせずに規模拡大が出来るのは、最初から資金力と人材に恵まれた人か、よほど運がよい人に限られます。

 規模拡大で問題なのは、拡大の過程で経験する「90%水準/n」の最低値がどのくらいかを見積もり、それを乗り切れるくらいに経営をスリム化しておくということでしょう。5000部確実タイトルを5本もっていても、それで経営的にプラスマイナスゼロになるような状態では、「水ものタイトル」を出すことは出来ません。水ものタイトルを新たに発行する過程で、必ず90%水準/nは悪化するからです(運がよければ、実際の売り上げを発行点数で割ったモノは悪化しないかもしれませんが、それは僥倖に過ぎません)。そのときもっている「確実タイトル」の規模と、規模拡大の過程で生じるコスト増の予測をにらみながら、90%水準/nの悪化を織り込んで計画を立てる必要があるのです。

 さらには、なるべく「谷底」を素早く通過することも大切です。初期の事業拡大のペースが遅い場合、谷底にとどまる期間が長くなり、赤字が膨らむ可能性は高まるからです。グラフを見ればわかるように、5000部確実タイトルがいくつかある場合に水ものタイトルを2~3点発行するというのが、一番よくありません。規模としては編集者が1人か2人くらいの時でしょう。この規模のままの状態で拡大しないでいるのは、一見安全策のようでいて非常に危険と考えられます。となると、確実タイトルしかない最初の状態の時に、ある程度財務内容もよくしておいて、一気に規模拡大できる準備をしておくことが必要だと言うことでしょう。

●規模が拡大するに従って、規模の小さい確実タイトルでは貢献できなくなる

 さらに、グラフの形をよく見てみると、「水ものタイトル」の数が15点程度になると、最初に5000部タイトルがいくつあったかは、経営の安定性にあまり関係なくなってしまう、ということもわかります。90%水準/nは収斂し、ほぼ同じになってしまうからです。これも第9回に示したように、「水ものタイトル」であっても発行点数が増えると90%水準/nは増加していきますが、15点程度でこれが500万円、すなわち5000部確実タイトルの売り上げ値に等しくなってしまうからです。さらに増加させると、90%水準/nの値は500万円を超えてしまうので、そのころには5000部確実タイトルの存在はかえって売り上げの足を引っ張ることになってしまいます。

 考えてみれば、これは非常に奇妙なことです。前回みたように、それぞれの「水ものタイトル」の売り上げ分布の中央値は470万円くらいで、つまり売り上げが500万円を超える確率は半分以下です。それでも、発行点数が15点を超えるくらいからは、確実な500万円の売り上げを目指すより、新たに水ものタイトルを出した方が経営の安定に資するようになり始めるのです(あくまで90%水準を指標に考えた場合で、95%水準や99%水準を指標と考える場合は別の結論になる可能性がありますが)。

 こうなると、ある程度、規模の大きな出版社になると、「小さな確実タイトルを出すより、水ものタイトルを1点でも多く出した方が経営の安定にはよい」ということになり、より多くのタイトルを出すインセンティブが高まっていくことになりそうです。

 しかし、毎年n点のタイトルを発行している出版社が、n+1点出すようになったら、90%水準はどの程度改善するのでしょうか。次回はそのあたりを出発点に、「零細出版社」を卒業した中小出版社が、さらに成長するためにはどうすればいいかを、改めて考えてみましょう。

 

2011年5月23日 (月)

書籍出版社の数理(11)――堅実な出版社が毎年1点だけ冒険的タイトルを刊行した場合

前回のエントリーからすごく時間がたってしまいました。もう忘れて興味を失ってしまった方もいると思いますが、第10回からの続きです。刊行タイトルを増やしてかえって経営が悪化するというのはどういうことかを、単純化した例から考えてみます。

●1タイトルしか本を出さない出版社の90%水準はどのくらいか?
 ここまでは、年間に複数タイトルを出す出版社の90%水準(90%以上の確率で売り上げがその値を上回ると予測される水準)がどのくらいになるか、ということを考えてきました。しかし、逆に1タイトルだけしか出さない場合の90%水準を考えてみましょう。

 単独タイトルでの90%水準は、本の売り上げの分布関数がわかっていれば、解析的に計算できます。

 でも、何度も言ってますけど、書籍出版業界には、ある1冊の本がどのくらいの確率で1万部以上売れるか、あるいは5000部以下の売り上げにとどまるか、というようなことをしめせるような統計が存在しません。ですから、おおざっぱに予測して確率分布を表す関数をでっち上げるしかありません。私がこのブログでの数値計算に使っている関数は、以下のようなものです。

  • 本の売れ部数は下限3,000部上限200万部で、累積分布関数の指数(パレート指数と呼ばれるもの)が1.63のべき分布に従うと考える(扱いやすいようデータは連続値である)。
  • すべての本の価格が1,000円であるとして、上記で生成させた値に1,000をかけた(生成させた数値が連続値なので、結果は1,000で割り切れるものにはならない)。

この1.63という指数がどこから来たものか、今まで申しませんでしたが、これは某書店のPOSデータから月間売り上げ上位のものを抽出し、フィッティングして得たものです。上限値と下限値は、最近の出版界の状況から、経験的に判断し、えいっと適当に設定しました。

 べき分布の累積密度関数を書き下すと、以下のようになります。数式出しますけど、怖がらないでください。

Photo_3
このq(x)が、「x部よりも多く売れる確率」を示します。βはパレート指数(今の場合は1.63)、xminは下限値(今の場合、3000)、xmaxは上限値(今の場合、200万)です。
 さて、この関数から90%水準などいろいろな数値を計算してみました。それは次のような値になります。

90%水準               3,200部
下四分位数             3,579部
中央値                4,590部
下四分位数             7,022部
10%水準              12,319部
5%水準               18,844部
平均値                7,633部
平均値以上を売り上げる確率  21.8%
1万部以上売り上げる確率    14%

と、まあこんな感じです。単行本の出版社にお勤めの方は、この数値をどのようにお考えになるでしょうか。私には、まあ、当たらずといえども遠からずと思えます。たとえば1万部以上売り上げる確率が10%以上20%未満というのは、実感からそう遠くはないのではないでしょうか。

 さて、問題は、安定性の指標となる90%水準です。なんと、3200部。この値は、今どきの出版業界では、もしかしたら高すぎる値かもしれません。初刷り部数が3000部程度の単行本も今や少なくないですから、実際の90%水準はもっと低い可能性があります。

 しかし、「現実世界の話」は少し置いておいて、分布の特性に注目すると、90%水準が理論上の下限値である3000部をわずかに200部上回るだけだというのは、驚くべき低さといえるでしょう。1冊1000円の価格設定で考えると、金額ベースでは320万円です。

 前回の議論で示したように、50点発行の場合は「90%水準/50」をシミュレーションで求めると、約573万円でした。つまり、50点発行の「90%水準/50」は部数ベースでは約5730部ということになり、これは上記の中央値さえ超えています。年間50点発行の出版社だって、これまでの研究でかなり不安定な事がわかっていますが、年間1点だけの出版社は、安定性など求めるべくもないと言うことです。

●これをベースに「刊行点数が増えてかえって経営が悪化する」のからくりを考える

 さて、ここまでの議論をもとに、もうすこし、具体的に考えてみましょう。

 非常に堅実な零細出版社があったとします。彼らは年間に「5000部確実タイトル」を5点出版していたとしましょう。この場合の指標を考えると、売り上げの90%水準も、中央値も、平均値も、5000×1000×5=2500万円です。

 彼らは、ある年、一念発起して、6点目の新刊として確実性のないタイトル(以下「水ものタイトル」と呼ぶ)を刊行したとします。すると、90%水準などの数値はどうなるでしょうか。水ものタイトルは1点だけなので、上記の指標を足し合わせるだけで、「5000部確実タイトル5点+水ものタイトル1点」の場合の各指標を導くことが出来ます。

「5000部確実タイトル5点+水ものタイトル1点」の場合の各指標
90%水準               28,200部→2820万円
下四分位数             28,579部→2857.9万円
中央値                29,590部→2959万円
下四分位数             32,022部→3202.2万円
10%水準              37,319部→3731.9万円
5%水準               43,844部→4384.4万円
平均値                32,633部→3263.3万円
90%水準/6             2820万円/6=470万円

と、このようになります。

 堅実が売り物だった零細出版社が、若社長に代替わりしたりすると、このように急に「水ものタイトル」を毎年出すようになったりします。指標を検討してみましょう。

 水ものタイトルの売り上げ平均は7600部あまりですから、長い目で見れば売り上げ向上に貢献するとは考えられます。平均売り上げは7000部あまり上乗せされるからです。しかし、これは、これまでの議論からおわかりのように、一部の本が例外的に多く売れることによる平均値のつり上げが原因です。

 むしろ、売り上げの安定性という意味では経営は悪化してしまうのです。5000部確実タイトルよりも多く「水もの」が売れる確率は、50%以下です(「水もの」の中央値は5000部未満なので)。すなわち、ほとんどの年度で、「水もの」なんかに手を出さない方がよかったという結果になるのです。重要な経営指標である90%/nの値は、以前の500万円から470万円に悪化してしまいます。

 これが、前回言いました「出版点数を増やしてかえって経営が悪化する」ということの基本的なからくりです。安定タイトルを積み重ねて地道にやってきたのに、そこに水ものタイトルを増やすと、せっかく上昇した90%水準/nが低下して、収益性が悪くなってしまうのです。一生懸命働いて貧乏になる、「骨折り損のくたびれもうけ」の好例ですね。悲しいですね。

 じゃあ、堅実が売り物の零細出版社は、ずっとこのままでいるしかないのでしょうか。会社が大きく成長するための方策は、ないのでしょうか。

 そんなことは、ないはずなんです。世の中にあるそこそこの規模まで成長した出版社が、全部、運の良さだけで成長した訳じゃないはずです。ちゃんとした長期的な戦略があれば、着実にに成長させていくことも出来るはずなんです。

 次回にさらに続きます。

2011年2月26日 (土)

書籍出版社の数理 番外編――いでよ! POSデータ!

 大変驚きました。こんな地味なテーマのブログが、はてブのホッテントリに入るなんて。
 円城塔氏がtumblrで紹介してくれたのがきっかけだったようで、おかげさまで、出版社の方にも見ていただけました(まあ、少なくとも、チラ見くらいはしてもらえましたでしょう)。ありがたいことです。

書籍出版社の数理(1)―売り上げの安定って大事ですよね: 順番学研究所 書籍出版社の数理(1)―売り上げの安定って大事ですよね: 順番学研究所

 熱の冷めないうちに、次の記事を書きたいのですが、まだ計算ができてないので、無理なんです。

 代わりに、お願いのための記事を書こうと思います。もうすこし、本の販売データを表に出していただけないかという、書店チェーンや取次の方々へのお願いです

●POSデータを研究用に、もっと公開してください!

 90年代後半から、コンピューターとネットのおかげで、あらゆるところに人間活動のログが残るようになりました。そのため、それを分析する学問が今、急激に進化しつつあります。たとえば、インターネットのトラフィックの分析、ツイッターのフォローの関係分析の話などは、聞いたことがある人も多いでしょう。それだけでなく、たとえば銀行間のお金のやりとりのログ解析とか、コンビニのPOSデータ分析といった、リアル社会のログ分析も積極的に行われています。

 もちろん、「本の売れ方」も、そういった研究の対象になります。でも、実のところ、本の売れ方の分析は、あまり進んでいないようです。大手企業が独占する形で情報をもっているので、その社内での分析は進んでいるのかもしれませんが、学術的な研究の対象にはしづらくて研究成果も表に出てきませんし、ましてや各出版社がそれを利用することもできません。大手取次の日販、トーハンには日々の出庫返品データや取引先書店のPOSデータ(タイトル、書店名、売れた時刻の記録)がたまっているはずですが、その全貌を見ることはできません。また、アマゾンにはもっとすごいデータが眠っているはずですが、秘密主義を徹底しているので、絶対に情報を公開しないでしょう。

 実は、日本の書籍市場は、本の売れ方について研究するのに、非常に理想的な「系」を提供しているのです。

 日本では書籍の定価販売が認められているので、値引きによる売れ行きの増減がありません。もし、値引きが行われると、本の発売当初は高い値段で売られ、時間がたつと値引きされるので、時間方向での売れ行きの比較に値引きの効果が載ってしまい、非常にやりづらくなりますが、日本ではそんな心配がありません。また、流通が大手取次の寡占になっているので、ほとんどの本の販売情報が、集約的に集まります。
 このような特性を利用して大量の販売データを解析すれば、本はどのように売れているのか、出版社にとってのリスクはどの程度なのかといったすぐ思いつくような疑問への答えのほか、疑問にさえ思わなかったような意外な発見が得られるはずです。

 世の中には、データさえあればどんどん研究をしてくれる研究者がたくさんいます。学術的な研究の対象にさえしてもらえれば、驚くような成果が出てくることは間違いありません。しかし、学術研究の対象になるためには、もとになるデータが公開されているか、お金を払えば買えるようになっているのが原則です。そうでなければ、ほかの研究者が結果を検証することができないので、科学的な議論の対象になりにくいからです。どうか、少なくとも学術目的のためには、本の販売データをもっと開示するよう、お願いしたいのです。

 そんな中、以前にも紹介したジュンク堂の販売シェアの情報(「書籍出版社の数理(8)―出版社同士の競争は激しいのか?」を参照)は、非常に貴重です。 また、会員出版社に公開されている紀伊國屋のPOSデータ、「パブライン」も貴重な情報源です(ただし、契約によりパブラインから得た情報を公開することは禁じられています。これがなければ、このブログでもお見せできるおもしろいネタがあるんですけど…)。情報は各社が整理したシステムの中にちゃんと存在してますし、あとはもう少し、情報の公開が進めば、学術研究の対象となり得るものが、日本にはたくさんあります。

 海外の研究者は、本の販売について研究するのに四苦八苦しています。たとえば、アマゾンの本の順位データを、毎時記録するシステムを作り、その変遷からどんなふうに売れかたが変化したかを研究するという、ちょっと聞くと涙ぐましいような努力をしている研究者もいます。そういうふうにしか情報が手に入らないのだから仕方がないのですが、このやり方だとアマゾン順位と売れ数の間に勝手な仮定を おいて論を進めるしかなく、それが間違っていると、致命的な欠陥となり得ます。

 私が、このブログで公開しているシミュレーションも、本の売り上げ分布の形をどのように仮定するかで、結果は変わってしまいます。より正確な売り上げ分布を知るためには、詳細なPOSデータは欠かせません。

 日本の書籍販売のデータが、世界の「書籍販売の研究」を一変させる可能性は大きいのです。私は研究者ではありませんが、本がどんなふうに売れるのかにはもちろん興味があり、少しでも多くを知りたいと思います。出版業界・書籍販売業界の多くの方も、そう思っていると思います。そのためには、情報の開示が必要です。大手書店・取次においでの方は、ほんの少しでいいので、そういったことについてお考えいただけないでしょうか。

2010年12月30日 (木)

書籍出版社の数理(10)――じゃあ小規模書籍出版社はどうすればいいの?

●書籍市場はどこもかしこも効率的で競争的なのか?

 前回の話を読んで、「じゃあ、小さい出版社はいつか必ずつぶれるのか…」と落胆された方もあるかもしれません。今回は、それを覆すような結論を導きます。

 前回は、出版社の規模には「臨界質量」ともいうべきものがあり、規模の小さい(出版点数の少ない)出版社は持続可能性が低く、長期的には生き残れないだろうということを、モンテカルロシミュレーションで導きました。しかし、一方で、現実には日本の出版社の大多数が10名以下の零細出版社で、それらは今も存続しているという、非常に矛盾する事実も指摘したわけです。

 理由のひとつとして、「出版社」といいながら、不動産業や広告業、自費出版など、商業出版以外の事業からの安定的な収入で支えられている会社は、相当な割合に上るだろうと、考えました。しかし、すべての零細出版社がそうではありません。もっと別な方法で、売り上げが安定している場合も考えられるのではないでしょうか。前回指摘した数理的な予測を覆すような事実が出版界に存在しないと、この現実を説明できません。

 その事実とは、「例外的にべき分布に従わない、安定的な売り上げを確保できるタイトルが存在する」ことだと考えられます。もし、書籍市場がどこもかしこも完全に効率的で競争的なら、そういうタイトルはすべて多数のライバルに狙われるはずなので、結局はべき分布の売り上げ確率の中に引きずり込まれるはずです(ベストセラーが出ると、情けないことに類似企画が山のように刊行されますが、ああいうことが書籍市場のあらゆる場所で起こるという意味です)。でも、現実には古典派経済学者が言うほど、市場は効率的でも競争的でもないのかもしれません。

 今回は、「参入障壁が高い出版物を発行しているせいで、自然な独占・寡占になっている」とか、「定期刊行物的な書籍でかつ固定読者があるために売り上げが安定しているタイトルがある」などの理由により、べき分布に従わないような安定的な売り上げを得ている小規模書籍出版社の例を考えてみましょう。

●売り上げが確実に見込めるタイトルがあると安定性は著しく高まる

 小規模出版社でも売り上げが非常に安定している会社は、少なからずあります。大学や専門学校などの教科書を作っていて毎年の採用が見込まれる会社、古典的名著などの定番商品が一定数売れ続ける会社、あるいは年刊・季刊などの準雑誌的な書籍を発行していてその売り上げが非常に安定している会社、または熱心なファンがついている作家の作品を定期的に発行している会社などが考えられます。このような安定的な売り上げのタイトルがラインナップにあるかどうかで、出版社の安定性はどの程度変わるのでしょうか。

 今回も、これをモンテカルロシミュレーションで検証していきます。

 年間発行タイトル数が50点の書籍出版社を考えます。出版物の売り上げの確率分布は、基本的にべき分布に従いますが、中に何冊か、必ず1万部売れるタイトル(以後、これを「1万部確実タイトル」と呼ぶ)をもっているとします。発行50タイトルのうち「1万部確実タイトル」が増えていったとき、年間売り上げの確率分布はどのように変化するでしょうか。

 シミュレーションしてみました。以下に、1万部確実タイトルが50タイトル中に0点から5点存在する場合の売り上げ分布を示します(クリックすると拡大)。いつもなら棒グラフで示すところですが、6種類のグラフを1つの中に描かなければならないので、折れ線グラフで示しています。今回もいつもと同じべき分布の条件で、試行回数1万回のモンテカルロシミュレーションをしました(末尾にシミュレーションの条件をまとめて示します)。

1

 わかりづらいですが、1万部確実タイトルが増えるに従って、グラフが右に少しずつシフトしています。1万部確実タイトルの数ごとに、各種指標の値がどうなるのかを表にして示します。

                                   
年間発行50点
90%水準286,367,875.46
90%水準/505,727,357.509
下四分位数313,095,634.8
下四分位/506,261,912.697
中央値351,895,379.5
中央値/507,037,907.59
上四分位数40,590,4474.6
上四分位/508,118,089.491

                                   
年間発行50点(うち1点が1万部)
90%水準291,396,531.85
90%水準/505,827,930.637
下四分位数317,087,571.3
下四分位/506,341,751.425
中央値354,450,270.7
中央値/507,089,005.414
上四分位数410,310,911.1
上四分位/508,206,218.221

                                   
年間発行50点(うち2点が1万部)
90%水準294,292,802.23
90%水準/505,885,856.045
下四分位数319,718,632.6
下四分位/506,394,372.653
中央値357,379,045.5
中央値/507,147,580.91
上四分位数413,280,061.6
上四分位/508,265,601.232

                                   
年間発行50点(うち3点が1万部)
90%水準299,289,549.53
90%水準/505,985,790.991
下四分位数322,502,380.9
下四分位/506,450,047.617
中央値359,148,878.6
中央値/507,182,977.573
上四分位数414,194,523.4
上四分位/508,283,890.468

                                   
年間発行50点(うち4点が1万部)
90%水準302,257,052.26
90%水準/506,045,141.045
下四分位数326,836,577.4
下四分位/506,536,731.548
中央値362,365,355.7
中央値/507,247,307.115
上四分位数414,645,495.7
上四分位/508,292,909.914

                                   
年間発行50点(うち5点が1万部)
90%水準305,696,430.7
90%水準/506,113,928.613
下四分位数329,544,178.1
下四分位数/506,590,883.562
中央値365,904,025.9
中央値/507,318,080.518
上四分位数417,180,123.5
上四分位数/508,343,602.47

 これら指標のうち、「90%水準/50」と「下四分位数/50」は売り上げの安定性をはかる大事な指標です。これらが1万部確実タイトルの数によってどのように推移するかをグラフに表してみましょう。

190

 このように、1万部確実タイトルの数が増えるに従い、90%水準が改善されることがわかります。1点増えるごとに、だいたい1%から1.5%の改善が見られます。金額にすると「90%水準」(50で割る前の値のこと)は1点増えるごとに約400万円増加します。

 特筆すべきは、発行タイトル数を増加させた場合との比較です。

 1万部確実タイトルが5点になった場合の「90%水準/50」は6,113,928円ですが、これは、年間発行タイトル数が100点になった場合の「90%水準/n」(nは年間発行タイトル数)である6,131,028円に匹敵する値(前回の議論参照)です!

 つまり、年間50点発行の小規模出版社にとって、1万部確実タイトルが5点あるということは、売り上げ安定性に関して、規模が2倍になったのと同じくらいの効果があることになります。

●「確実タイトル」の規模が大きいほど大幅に改善される

 さらに極端な場合を考えてみましょう。年間発行数50点のうち1点だけ、5万部売れるタイトル(5万部確実タイトル)がある場合です。そのような場合のシミュレーションを行い、求めた売り上げの分布が以下のものです。比較のため、「確実タイトル」がない場合と、1万部確実タイトル5点の場合の分布も一緒に載せてあります。

 

5

 非常に明確に、分布が右にシフトしているのがわかります。この場合の各種指標も、以下に示します。

                                   
 年間発行50点(うち1点が5万部)
90%水準330,700,542
90%水準/506,614,011
下四分位数357,125,214
下四分位数/507,142,504
中央値392,986,484
中央値/507,859,730
上四分位数448,943,709
上四分位数/508,978,874
 

 この場合の90%水準/50は6,614,011万円ですが、この値は年間発行タイトルが200点の時の90%水準/n=6,453,994円(前回参照)よりも大きな値です! 年間50点発行の小規模出版社に、毎年、5万部売り上げ確実タイトルが存在すれば、規模が4倍以上になったのに匹敵するほどの売り上げの安定性が得られることになります。

 本の売り上げが従う、べき分布の不安定性は非常に大きいので、何点かでも安定的な売り上げを稼げるタイトルがあると、売り上げの安定に非常に大きな寄与があることが、以上からわかります。

●安定性だけを追い求めて、小規模な「確実タイトル」を集めると……

 上記の1万部確実タイトルと5万部確実タイトルの比較をしてみると、示唆的なことがわかります。売り上げ安定化のためには、確実タイトルの規模が大きい方がずっと効果が大きいと言うことです。逆に言えば、小規模な確実タイトルを集めるという戦略では、安定性の実現のためにその種のタイトルの比率を極端に高めねばならず、結局、そういう本だけしか出せなくなってしまいます。 書籍出版社の数理2 で指摘したように、数百部単位が大学などで採用される見込みのタイトルばかりを集めて、ほとんどそれだけでラインナップを構成するという方針をどの出版社も採れるわけではありません。
 しかし、その一方で、理工系の大学教科書を作る会社やカルチャーセンターのテキストを作る会社など、それを本業として意義ある本を出そうという出版社が存在できるのは、その方針を貫いて、べき分布の脅威から会社を守っているからなのだと考えられます。

 このように考えていくと、小規模出版社がこれほど多く存続できている理由は、「確実タイトル」により、説明されると考えていいでしょう。新刊でも既刊でも、ある程度確実に売れる見込みのあるタイトルをもっていれば、規模が小さくても売り上げを安定化させることが可能になり、売り上げがつねに「臨界点」を上回るようなシステムを作ることができると考えられます。そして、現在、出版社として維持できている会社は、そのような条件を満たすような、柱となるタイトルをもっているということでしょう。

●「自転車操業」が招く悲劇も解明できる…か?

 書籍出版社は、「自転車操業」といって、どんどんと刊行点数を増やしていかないとお金が回らなくなる事態に陥ることが多いと言われます。
 借金を返すために売り上げを高めなければならず、そのために発行タイトル数を増やす。すると、売れない本が出て赤字が増え、結果的により多くの借金を背負うことになる。その借金を返すために、さらに発行タイトル数を増やす……。このようなスパイラルに陥ることを、自転車操業といいます。このような状態に陥ると、借金が増加するので、出版社が持続していくための「臨界点」の水準も高くなり、より倒産の確率は高くなります。

 経験的に、そのようなことはよく言われていますし、実際に起こっているでしょう。しかし、その裏には、どのような数理があるのか? どのようなことに気をつければ、自転車操業の罠にはまらなくなるのでしょうか? この辺のことも、「基本的に売り上げはべき分布に従う」「しかし、例外的にべき分布に従わない『確実タイトル』が存在する」という2つの条件を考えれば、説明できそうです。次回は、そのことについて考えてみましょう。

*シミュレーションに使ったダミーデータの生成条件

  • 下限3,000部上限200万部で、累積分布関数の指数が1.63のべき分布に従うよう、データをランダムに生成させた(生成させたデータは連続値)。
  • すべての本の価格が1,000円であるとして、上記で生成させた値に1,000をかけた(生成させたデータが連続値だったので、結果は1,000で割り切れるものにはなっていない)。
  • 試行回数は10,000回
  • 「確実タイトル」の売り上げは、単純加算した。たとえば50点中5点が確実タイトルだった場合は、45点分の売り上げをモンテカルロで生成させ、そこに確実タイトル5点分の売り上げを足すことで、年間売り上げを生成させた。

2010年12月23日 (木)

書籍出版社の数理(9)――書籍出版社に「臨界質量」は存在するか? 

●出版社に「臨界質量」って、いったい何のこと?

  物理学には、よく臨界という概念が出てきますが、今回は、その「臨界」が書籍出版社にもあるのではないか、ということを考えてみましょう。具体的に言うと、書籍出版社はある程度以上の規模がないと、持続可能ではないのではないか、ということを検討します。

 臨界のなかでも、もっとも有名なのが、ウランなどの核燃料の「臨界質量」です。
 核燃料として使われるウラン235は、自然に崩壊する過程で中性子を放出しますが、その中性子が別のウランの核にぶつかると、その核の崩壊を誘発します。誘発されて崩壊した核からもまた中性子が出て、ほかのウランの核が崩壊させる。このようにして連鎖反応が起きるため、ある一定量以上の高濃度ウランを一カ所においておくと、連鎖反応が止めどなく起こり、爆発を起こしてしまいます。これが広島型原爆の原理です。このような、連鎖反応が起こる質量のことを、ウランの臨界質量=クリティカル・マスなどと言います。ウラン燃料の連鎖反応が起こる条件は、十分な量の中性子が供給され、それが十分な量の核に衝突して崩壊が起こることなのです。

 翻って、書籍出版社が連続的に本を出し続けていけるための条件とは何でしょうか。それは、前年の売り上げから、翌年の本作りのために十分な資金を供給できるかどうかです。前年の売り上げが極端に少なく、銀行などからの借り入れでつなぐこともできなくなると、会社は倒産し、「連鎖反応」がストップしてしまうことになります。

 以前、「書籍出版社の数理(4)――モンテカルロ法で売り上げの確率分布を求める!」で検討したように、書籍出版社の年間売り上げの変動幅は大きく、売り上げが極端に少なくなる確率はかなり大きいといえます。私が以前提案した指標、「90%売り上げ水準」(90%以上の確率で、売り上げがその水準を上回るという値)の金額があまりに低い場合には、売り上げが非常に少なくなる確率が無視できないくらい大きいということで、すなわち、会社が倒産してしまう確率も無視できないくらい大きくなります。

 今回検証したいのは、その「90%売り上げ水準」が出版社の規模によってどのように変わるかです。出版社の規模、すなわち、年間発行タイトル数がある臨界点以下だと、倒産の確率が無視できないくらい高まり、持続可能性が著しく小さくなるのではないか、ということを考えてみます。

●規模が大きくなるほど、安定性は高まっていく

 そこで今回は、年間発行タイトル数が「50点の場合」「100点の場合」「200点の場合」「500点の場合」で売り上げの確率分布がどう変わるかをシミュレーションしてみました。

 本の売り上げ分布がべき分布に従うとし、以前「書籍出版社の数理(4)」で使ったのと同じ分布を利用して、モンテカルロシミュレーションを行いました(分布の特性など、シミュレーションの条件は、最後にまとめて示します)。
 年間発行タイトル数が増えれば、売り上げが増えるのはアタリマエです。今問題にしたいのは確率分布ですから、規格化するため、「年間売り上げ/出版タイトル数」の分布を見ることにします。つまり、「1年間の新刊1タイトルあたりの平均売り上げ」の分布を見ていることになります。シミュレーションの試行回数は、それぞれ1万回ずつです。
 まずは、それぞれの発行タイトル数の時の分布を以下に示します(クリックすると拡大)。

Photo

 グラフを見ると、発行タイトル数が増えるに従い、分布のピークは高くなり、極端に低い売り上げや高い売り上げになる確率は低くなります。発行タイトル数が少ないと、なだらかな分布になり、極端に低い売り上げにとどまる確率は高くなります。つまり、発行タイトル数が大きいほど、金融の世界で言うところの「リスク」が少なくなり、売り上げの変動が少ない安定した経営ができることがわかります。
 数値も見てみましょう。

年間50タイトル発行の場合
90%水準        286,367,875円
90%水準/50        5,727,357円
上四分位数/50    8,118,404円
下四分位数/50    6,261,912円

年間100タイトル発行の場合   
90%水準        613,102,857円
90%水準/100        6,131,028円
上四分位数/100    8,142,839円
下四分位数/100    6,597,425円

年間200タイトル発行の場合
90%水準        1,290,798,867円
90%水準/200        6,453,994円
上四分位数/200    8,058,901円
下四分位数/200    6,818,457円

年間500タイトル発行の場合
90%水準        3,400,693,473円
90%水準/500        6,801,386円
上四分位数/500    7,994,892円
下四分位数/500    7,102,507円

 これら数値のうち、90%水準/n(nは発行タイトル数)と、下四分位数/nを発行タイトル数でプロットしたグラフを下に示します(下四分位数は、この場合、4分の3の確率でその値を上回るというラインを示す)。

90

 このように、発行タイトル数が増えると90%水準や下四分位数は相対的に上昇していくことがわかります。発行タイトルが50から500へと、規模が10倍になると、90%水準/nは 5,727,357円から 6,801,386円 へと、金額にして100万円以上、2割近くも改善することがわかります。このシミュレーションでは、本の価格をすべて1000円と仮定していますから、金額ベースで100万円改善されると言うことは、冊数ベースだと1000部改善されるということです。出版社で本作りをしている人にとって、前提となる1タイトルあたりの冊数が1000部違うというのが、どういう意味を持つか、実感できるのではないでしょうか。

 本の売り上げの「母集団」のべき分布が示す、1タイトルあたり売り上げの平均値は、7,600,000円程度です。90%水準/nも下四分位数/nも、nが増えるにつれて平均値に近づいていきます。これは中心極限定理の効果ですね。
 このようにして、発行タイトル数が増えるほど、平均の売り上げが低くなる確率は減少しますので、経営は安定していくと予想されます。

 先に述べたように、出版社が継続的に本を出し続けるには、つねに売り上げがある水準(経営を危機にさらすような水準)を下回らないようにしなければなりません。ここで検討したように、そのような条件を満たすためには、規模が大きい(年間発行タイトル数が多い方)が有利で、小さいと著しく不利になることがわかります。ここで検討しているのは新刊売り上げだけですが、新刊依存率が高い出版社では、まさにこれが当てはまっていることでしょう。
 各出版社の経費の規模などを推測するのは非常に困難なので、ここでは定性的な議論にとどまり、「年間何タイトル以上発行しないと持続可能性が危ういか?」というような問いには、具体的に答えることはできません。しかし、それぞれの経営形態によって、書籍出版社には「臨界質量」が存在し、ある規模以下の出版社は長期的には存続できないであろうことが、予測されます。

●しかし、現実はこの予測に真っ向から矛盾する!

 しかし、です。現実はこの予測に矛盾するのです。

 『出版年鑑2009』によれば、日本の出版社数は合計3979社あり、そのうち2085社が従業員数10名以下の零細出版社です。規模が小さい会社が多いというのが、日本の出版業界の特徴なのです。

 規模が10名以下の出版社が、年間に50タイトル以上の本を出しているとは考えられません。このような会社が継続して存在している理由が、何かあるはずだと考えなければなりません。

 ひとつには、これらの零細出版社が、実際には収益を、書籍の商業出版以外の事業から得ているということでしょう。不動産業や広告業、自費出版など、商業出版とは別の安定的な事業をもっており、そちらが実質的な本業になっている会社はかなりの割合に上ると考えられます。

 もうひとつには、出版社が比較的高い参入障壁のある市場で「自然な寡占・独占」を形成し、べき分布にならないような、安定的な売り上げを達成しているという場合が考えられます。

 次回は、そのような安定的な収入源が、出版社の経営にどのような影響を与えるかを考えてみたいと思います。

*シミュレーションに使ったダミーデータの生成条件

  • 下限3,000部上限200万部で、累積分布関数の指数が1.63のべき分布に従うよう、データをランダムに生成させた(生成させたデータは連続値)。
  • すべての本の価格が1,000円であるとして、上記で生成させた値に1,000をかけた(生成させたデータが連続値だったので、結果は1,000で割り切れるものにはなっていない)。
  • 各年度の発行タイトル数が50点、100点、200点、500点のそれぞれの場合についてシミュレーションを行った。
  • 試行回数は10,000回

その他のカテゴリー